
Reasoning inside a formula and ontological
correctness of a formal mathematical text

Andrei Paskevich1, Konstantin Verchinine1,
Alexander Lyaletski2, and Anatoly Anisimov2

1 Université Paris 12, IUT Sénart/Fontainebleau, 77300 Fontainebleau, France,
andrei@capet.iut-fbleau.fr verko@capet.iut-fbleau.fr

2 Kyiv National Taras Shevchenko University, Faculty of Cybernetics,
03680 Kyiv, Ukraine,

lav@unicyb.kiev.ua ava@unicyb.kiev.ua

Abstract. Dealing with a formal mathematical text (which we regard as
a structured collection of hypotheses and conclusions), we often want to
perform various analysis and transformation tasks on the initial formulas,
without preliminary normalization. One particular example is checking
for “ontological correctness”, namely, that every occurrence of a non-
logical symbol stems from some definition of that symbol in the forego-
ing text. Generally, we wish to test whether some known fact (axiom,
definition, lemma) is “applicable” at a given position inside a statement,
and to actually apply it (when needed) in a logically sound way.
In this paper, we introduce the notion of a locally valid statement, a
statement that can be considered true at a given position inside a first-
order formula. We justify the reasoning about “innards” of a formula; in
particular, we show that a locally valid equivalence is a sufficient condi-
tion for an equivalent transformation of a subformula. Using the notion
of local validity, we give a formal definition of ontological correctness for
a text written in a special formal language called ForTheL.

1 Introduction

In a mathematical text, be it intended for a human reader or formalized for
automated processing (Mizar Mathematical Library [1] is a classical example, see
also [2]), we rarely meet “absolute”, unconstrained rules, definitions, statements.
Usually, everything we use is supplied with certain conditions so that we have
to take them into consideration. For example, we can not reduce the fraction xy

x
until we prove that x is a nonzero number.

Let us consider a formula of the form (· · · ∀x (x ∈ IR+ ⊃ (· · · xy
x · · ·)) · · ·).

It seems to be evident that we can replace xy
x with y, but could we justify

that? The task itself seems to be absurd: as soon as a term depends on bound
variables, we can not reason about it. In the traditional fashion, we should first
split our big formula up to the quantifier that binds x, make a substitution (or
skolemization), separate x ∈ IR+, and only then make the simplification.

However, while the statement “x is non-zero” is surely meaningless, we can
say that “x is non-zero in this occurrence of xy

x ”. Our intuition suggests that

along with the usual notion of validity, a certain local validity of a proposition
can be defined with respect to some position in a formula. A statement that is
generally false or just meaningless can become locally valid being considered in
the corresponding context. In what follows, we call such a proposition a local
property of the position in question.

It can be argued that there is no gain in any simplifications when a formula
to be simplified lies deep inside. We would split our big formula anyway to use
the properties of that fraction in a proof. However, we believe that it is useful
and instructive to simplify a problem in its initial form as far as possible in order
to select the most perspective direction of the proof search.

Local properties are also necessary to verify (and even to define!) what we
call ontological correctness of a mathematical text. Informally, we consider a text
ontologically correct whenever it contains no occurrence of a non-logical symbol
that comes from nowhere: for every such occurrence there must be an applicable
definition or some other “introductory” premise. The purpose of ontological cor-
rectness may be not immediately obvious: for example, the famous disjunction
“to be or not to be” is perfectly valid (at least, in classical logic) even if the
sense of being has never been defined. Nevertheless, ontologically correct texts
are preferable in many aspects.

Ontological correctness is closely related to type correctness in typed lan-
guages (especially, in weakly typed systems such as WTT [3]). It allows to spot
formalization errors which otherwise could hardly be detected. Indeed, an acci-
dental ontological incorrectness most often implies logical incorrectness (i.e. pres-
ence of false or unprovable claims). And it is much harder to trace a failure log
of a prover back to an invalid occurrence than to discover it in the first place.

Moreover, during ontological verification, we obtain information about ap-
plicability of definitions and other preliminary facts at individual positions in
the text in question. As long as subsequent transformations (e.g. during the logi-
cal verification phase) preserve ontological correctness and other local properties
(and that should always be the case) we can unfold definitions and apply lemmas
without further checking.

This paper is devoted to formalization of ontological correctness for a partic-
ular language of formal mathematical texts, called ForTheL [4]. To this purpose,
we develop a theoretical background for reasoning about local properties based
on the notion of local image. The rest of the paper is organized as follows. In
Section 2, we briefly describe the ForTheL language and provide an informal (at
the moment) definition of ontological correctness of a ForTheL text. Section 3
introduces preliminary notions and notation which we use to define and inves-
tigate the notion of local image in Section 4. With the help of local images, we
give a precise definition of ontological correctness in Section 5.

2 ForTheL language

Like any usual mathematical text, a ForTheL text consists of definitions, as-
sumptions, affirmations, theorems, proofs, etc. The syntax of a ForTheL sentence

follows the rules of English grammar. Sentences are built of units: statements,
predicates, notions (that denote classes of objects) and terms (that denote in-
dividual entities). Units are composed of syntactical primitives: nouns which
form notions (e.g. “subset of”) or terms (“closure of”), verbs and adjectives
which form predicates (“belongs to”, “compact”), symbolic primitives that use
a concise symbolic notation for predicates and functions and allow to consider
usual quantifier-free first-order formulas as ForTheL statements. Of course, just
a little fragment of English is formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language: assumptions,
selections, and affirmations. Assumptions serve to declare variables or to provide
some hypotheses for the following text. For example, the following sentences are
typical assumptions: “Let S be a finite set.”, “Assume that m is greater
than n.”. Selections state the existence of representatives of notions and can
be used to declare variables, too. Here follows an example of a selection: “Take
an even prime number X.”. Finally, affirmations are simply statements: “If p
divides n - p then p divides n.”. The semantics of a sentence is determined
by a series of transformations that convert a ForTheL statement to a first-order
formula, so called formula image.

Example 1. The formula image of the statement “all closed subsets of any
compact set are compact” is:

∀ A ((A is a set ∧ A is compact) ⊃
∀ B ((B is a subset of A ∧ B is closed) ⊃ B is compact))

ForTheL sections are: sentences, sentences with proofs, cases, and top-le-
vel sections: axioms, definitions, signature extensions, lemmas, and theorems.
A top-level section is a sequence of assumptions concluded by an affirmation.
Proofs attached to affirmations and selections are simply sequences of low-level
sections. A case section consists of an assumption called case hypothesis followed
by a sequence of low-level sections (the proof of a case).

Any section A or sequence of sections ∆ has a formula image, denoted |A|
or, respectively, |∆|. The image of a sentence with proof is the same as the
image of that sentence taken without proof. The image of a case section is the
implication (H ⊃ thesis), where H is the formula image of the case hypothesis
and thesis is a placeholder that will be replaced by the statement being proved
during verification. The formula image of a top-level section is simply the image
of the corresponding sequence of sentences.

The formula image of a sequence of sections A,∆ is a conjunction |A| ∧ |∆|,
whenever A is a conclusion (affirmation, case section, lemma, theorem); or a
universally quantified implication ∀xA(|A| ⊃ |∆|), whenever A is a hypothesis
(assumption, selection, case hypothesis, axiom, definition, signature extension).
Here, xA denotes the set, possibly empty, of variables declared in A (this set
also depends on the logical context of A, since any variable which is declared
above A in the text must not be bound in |A|). The formula image of the empty
sequence is >, the truth.

Thus, a ForTheL text as a whole, being a sequence of section, can be ex-
pressed as a single logical formula. In what follows, we often use formulas, sec-
tions and sequence of sections interchangeably: whenever a section or a sequence
of sections is mentioned where a formula is expected, the corresponding formula
image should be considered.

In this syntax, we can express various proof schemes like proof by contradic-
tion, by case analysis, and by general induction. The last scheme merits special
consideration. Whenever an affirmation is marked to be proved by induction,
the system constructs an appropriate induction hypothesis and inserts it into
the statement to be verified. The induction hypothesis mentions a binary rela-
tion which is declared to be a well-founded ordering, hence, suitable for induc-
tion proofs. Note that we cannot express the very property of well-foundness in
ForTheL (since it is essentially a first-order language), so that the correctness of
this declaration is unverifiable and we take it for granted. After that transfor-
mation, the proof and the transformed statement can be verified in a first-order
setting, without any specific means to build induction proofs.

Example 2. Consider the following ForTheL formalization of Newman’s lemma
about term rewriting systems. We give it in an abridged form, with some pre-
liminary definitions and axioms omitted. The expression “x -R> y” means that
y is a reduct of x in the rewriting system R; R+ and R* denote, respectively, the
transitive and the reflexive transitive closure of R.

Let a,b,c,d,u,v,w,x,y,z denote elements.

Let R,S,T denote rewriting systems.

Definition CRDef. R is confluent iff

for all a,b,c such that a -R*> b and a -R*> c

there exists d such that b -R*> d and c -R*> d.

Definition WCRDef. R is locally confluent iff

for all a,b,c such that a -R> b and a -R> c

there exists d such that b -R*> d and c -R*> d.

Definition TrmDef. R is terminating iff

for all a,b a -R+> b => b -<- a.

Definition NFRDef. A normal form of x in R is

an element y such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every element x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that

for all a,b,c such that a -R*> b and a -R*> c

there exists d such that b -R*> d and c -R*> d.

Assume that a -R+> b and a -R+> c.

Take u such that a -R> u and u -R*> b.

Take v such that a -R> v and v -R*> c.

Take w such that u -R*> w and v -R*> w.

Take a normal form d of w in R.

Let us show that b -R*> d.

Take x such that b -R*> x and d -R*> x.

end.

Let us show that c -R*> d.

Take y such that c -R*> y and d -R*> y.

end.

end.

qed.

Our formalization is simplified in that the notion “element” takes no argu-
ments, i.e. we consider rewriting systems to be defined on a common (implicit)
universum. Also, in our current implementation of ForTheL, one can not declare
a given binary relation to be well-founded, and therefore a rewriting system is
defined to be terminating iff its inverted transitive closure is a subset of the well-
founded relation “-<-” (Definition TrmDef). The induction hypothesis (namely,
that any reduct of a is confluent) is used to verify the selections “Take x...” and
“Take y...” at the end of the proof. Note that we do not consider cases where b
or c, or both are equal to a — these cases are trivial enough so that the system
can handle them without our assistance.

The ForTheL proof of Newman’s lemma, while being quite terse and close
to a hand-written argument, is formal and has been automatically verified by
the SAD proof assistant, using SPASS 2.2, E 0.99, and Vampire 7.45 as back-
ground provers. We refer the reader to the papers [4, 5] and to the website
http://ea.unicyb.kiev.ua for a description of SAD and further examples.

We call a ForTheL text ontologically correct whenever: (a) every non-logical
symbol (constant, function, notion or relation) in the text is either a signature
symbol or is introduced by a definition; and (b) in every occurrence of a non-
logical symbol, the arguments, if any, satisfy the guards of the corresponding
definition or signature extension. Since ForTheL is a one-sorted and untyped
language, these guards can be arbitrary logical formulas. Therefore, the latter
condition cannot be checked by purely syntactical means nor by type inference
of any kind. Instead, it requires proving statements about terms inside complex
formulas, possibly, under quantifiers. The following sections provide a theoretical
basis for such reasoning.

3 Preliminary notions

We consider a one-sorted first-order language with equality (≈), the standard
propositional connectives ¬, ∧, ∨, ⊃, ≡, the quantifier symbols ∀ and ∃, and
the boolean constant >, denoting truth. The respective order of subformulas is

significant for some of our definitions, therefore we consider F ∧ G and G ∧ F
as different formulas (the same is true for ∨, ≡, and ≈). We write the negated
equality ¬(s1 ≈ s2) as s1 6≈ s2 and the negated truth ¬> as ⊥.

We suppose that the sets of free and bound variables in any term or formula
are always disjoint. Also, a quantifier on a variable may never appear in the
scope of another quantifier on the same variable.

We consider substitutions as functions which map variables to terms. For any
substitution φ, if xφ is different from x, we call the term xφ a substitute of x in
φ. A substitution is finite whenever the set of its substitutes is finite. We write
finite substitutions as sequences of the form [t1/x1, . . . , tn/xn].

Position is a word in the alphabet {0, 1, . . . }. In what follows, positions
are denoted by Greek letters τ , µ and ν; the letter ε denotes the null position
(the empty word). Positions point to particular subformulas and subterms in a
formula or term.

The set of positions in an atomic formula or a term E, denoted Π(E), is
defined as follows (below i.Π stands for { i.τ | τ ∈ Π }):

Π(P (s0, . . . , sn)) = {ε} ∪
⋃

i.Π(si) Π(s ≈ t) = {ε} ∪ 0.Π(s) ∪ 1.Π(t)

Π(f(s0, . . . , sn)) = {ε} ∪
⋃

i.Π(si) Π(>) = {ε}

The set of positions in a formula H, denoted Π(H), is the disjoint union

Π(F) = Π+(F) ∪ Π−(F) ∪ Π◦(F)

of the set of positive positions Π+(H), the set of negative positions Π−(H),
and the set of neutral positions Π◦(H) (in what follows, A stands for an atomic
formula):

Π+(F ≡ G) = {ε} Π+(∀xF) = {ε} ∪ 0.Π+(F)

Π+(F ⊃ G) = {ε} ∪ 0.Π−(F) ∪ 1.Π+(G) Π+(∃xF) = {ε} ∪ 0.Π+(F)

Π+(F ∨G) = {ε} ∪ 0.Π+(F) ∪ 1.Π+(G) Π+(¬F) = {ε} ∪ 0.Π−(F)

Π+(F ∧G) = {ε} ∪ 0.Π+(F) ∪ 1.Π+(G) Π+(A) = Π(A)

Π−(F ≡ G) = ∅ Π−(∀xF) = 0.Π−(F)

Π−(F ⊃ G) = 0.Π+(F) ∪ 1.Π−(G) Π−(∃xF) = 0.Π−(F)

Π−(F ∨G) = 0.Π−(F) ∪ 1.Π−(G) Π−(¬F) = 0.Π+(F)

Π−(F ∧G) = 0.Π−(F) ∪ 1.Π−(G) Π−(A) = ∅

Π◦(F ≡ G) = 0.Π(F) ∪ 1.Π(G) Π◦(∀xF) = 0.Π◦(F)
Π◦(F ⊃ G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(∃xF) = 0.Π◦(F)
Π◦(F ∧G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(¬F) = 0.Π◦(F)
Π◦(F ∨G) = 0.Π◦(F) ∪ 1.Π◦(G) Π◦(A) = ∅

For the sake of consistency, we set Π+(t) = Π(t) and Π−(t) = Π◦(t) = ∅ for
any term t.

Among positions, we distinguish those of formulas (ΠF), those of atomic
formulas (ΠA), and those of terms (Πt). Obviously, Π(F) = Πt(F) ∪ ΠF(F),
ΠA(t) = ΠF(t) = ∅, ΠA(F) ⊆ ΠF(F), Π(t) = Πt(t). We split the sets Πt, ΠA,
and ΠF into positive, negative, and neutral parts, too.

Given a formula H and a position π ∈ Π(H), the position π̂ is the maximal
prefix of π in ΠF(H). In what follows, we will often use this conversion to extend
notions and operations defined on positions from ΠF to the whole Π.

A formula or a term E along with a position τ ∈ Π(E) defines an occurrence.
Let us say that π is a textual predecessor of τ whenever π = ω.i.µ and

τ = ω.j.η and i < j. Such positions will be called adjacent. If µ = ε, we will
say that π is a logical predecessor of τ . By default, “predecessor” means “logical
predecessor”.

Given a formula or a term E and a position τ in Π(E), we will denote by
E|τ the subformula or subterm occurring in that position. In what follows, (∗F)
stands for (¬F), (∀xF), or (∃xF); and (F ∗ G) stands for (F ≡ G), (F ⊃ G),
(F ∧G), or (F ∨G):

E|ε = E (∗ F)|0.τ = F |τ
(F ∗G)|0.τ = F |τ (F ∗G)|1.τ = G|τ

P (s0, . . . , sn)|i.τ = si|τ (s ≈ t)|0.τ = s|τ
f(s0, . . . , sn)|i.τ = si|τ (s ≈ t)|1.τ = t|τ

Given a formula or a term E, a position τ in Π(E), and a formula or a term
e, we will denote by E[e]τ the result of replacement of E|τ with e:

E[e]ε = e (∗ F)[e]0.τ = ∗ F [e]τ
(F ∗G)[e]0.τ = F [e]τ ∗G (F ∗G)[e]1.τ = F ∗G[e]τ

P (s0, . . . , sn)[e]i.τ = P (s0, . . . , si[p]τ , . . . , sn) (s ≈ t)[e]0.τ = s[e]τ ≈ t

f(s0, . . . , sn)[e]i.τ = f(s0, . . . , si[p]τ , . . . , sn) (s ≈ t)[e]1.τ = s ≈ t[e]τ

The expression e must be a term if τ ∈ Πt(E), and a formula otherwise. Free
variables of e may become bound in F [e]τ .

4 Local validity and local properties

Given a formula F , a position π ∈ ΠF(F), and a formula U , we define the local
image of U w.r.t. F and π, denoted 〈U〉Fπ , as follows:

〈U〉F≡G
0.π = 〈U〉Fπ 〈U〉F≡G

1.π = 〈U〉Gπ 〈U〉∀xF
0.π = ∀x 〈U〉Fπ

〈U〉F⊃G
0.π = G ∨ 〈U〉Fπ 〈U〉F⊃G

1.π = F ⊃ 〈U〉Gπ 〈U〉∃xF
0.π = ∀x 〈U〉Fπ

〈U〉F∧G
0.π = G ⊃ 〈U〉Fπ 〈U〉F∧G

1.π = F ⊃ 〈U〉Gπ 〈U〉¬F
0.π = 〈U〉Fπ

〈U〉F∨G
0.π = G ∨ 〈U〉Fπ 〈U〉F∨G

1.π = F ∨ 〈U〉Gπ 〈U〉Fε = U

Roughly, the formula 〈U〉Fπ says “U is true at the position π in F”. Note that
this formula does not depend on the subformula F |π. For a position π ∈ Πt(F),
we define 〈U〉Fπ to be 〈U〉Fbπ , where π̂ is the longest prefix of π in ΠF(F).

Example 3. Let F be the formula

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ (x ≈ fib(n) ≡
≡ ((n ≤ 1 ∧ x ≈ 1) ∨ x ≈ (fib(n− 1) + fib(n− 2))))))

This formula represents a recursive definition. We want to verify that the argu-
ments (n − 1) and (n − 2) satisfy the guards of the definition and are strictly
less than n.

Consider the second argument. Let π denote its position, 0.1.0.1.1.1.1.1.0.
We want to prove 〈(n− 2) ∈ IN ∧ (n− 2) < n〉Fπ . The latter formula is equal to

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ ((n ≤ 1 ∧ x ≈ 1) ∨ ((n− 2) ∈ IN ∧ (n− 2) < n))))

But this formula is false given n = x = 0. And that reveals an error in our
definition: x = 0 makes false the left side of the disjunction F |0.1.0.1.1, so we
have to consider the right side with n = 0 in order to evaluate the truth value
of the whole disjunction. Now it is easy to build a good definition F ′ of fib:

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃ (x ≈ fib(n) ≡
≡ ((n ≤ 1 ∧ x ≈ 1) ∨ (n ≥ 2 ∧ x ≈ (fib(n− 1) + fib(n− 2)))))))

Obviously, the local image 〈(n− 2) ∈ IN ∧ (n− 2) < n〉F ′

0.1.0.1.1.1.1.1.1.0 is a valid
formula:

∀x (x ∈ IN ⊃ ∀n (n ∈ IN ⊃
⊃ ((n ≤ 1 ∧ x ≈ 1) ∨ (n ≥ 2 ⊃ ((n− 2) ∈ IN ∧ (n− 2) < n)))))

Lemma 1. For any F , π ∈ Π(F), and a formula U , ∀U ` 〈U〉Fπ .

Proof. Here, ∀U denotes the universal closure of U . The formula 〈U〉Fπ is equiv-
alent to a universally quantified disjunction and U is a positive component of
this disjunction. ut

Lemma 2. (local modus ponens) ` 〈U ⊃ V 〉Fπ ⊃ (〈U〉Fπ ⊃ 〈V 〉Fπ)

Lemma 2 can be proved by a simple induction on the length of π.
The lemmas above show that we can consistently reason about local proper-

ties. They are powerful enough to prove some interesting corollaries.

Corollary 1. ` 〈U ≡ V 〉Fπ ⊃ (〈U〉Fπ ≡ 〈V 〉Fπ)

Proof. By Lemma 1 we have ` 〈(U ≡ V) ⊃ (U ⊃ V)〉Fπ . Hence by Lemma 2,
` 〈(U ≡ V)〉Fπ ⊃ (〈U ⊃ V 〉Fπ). Again by local modus ponens, ` 〈(U ≡ V)〉Fπ ⊃
(〈U〉Fπ ⊃ 〈V 〉Fπ). In the same way, ` 〈(U ≡ V)〉Fπ ⊃ (〈V 〉Fπ ⊃ 〈U〉Fπ). ut

Corollary 2. ` 〈U ∧ V 〉Fπ ≡ (〈U〉Fπ ∧ 〈V 〉Fπ)

Proof. In order to prove the necessity, we take the propositional tautologies
(U ∧ V) ⊃ U and (U ∧ V) ⊃ V . In order to prove the sufficiency, we take
the propositional tautology U ⊃ (V ⊃ (U ∧ V)). Then we “immerse” a chosen
tautology inside the formula F by Lemma 1 and apply local modus ponens. ut

Corollary 3. For any quantifier-free context C,

`
(
〈U1 ≡ V1〉Fπ ∧ · · · ∧ 〈Un ≡ Vn〉Fπ ∧ 〈t1 ≈ s1〉Fπ ∧ · · · ∧ 〈tm ≈ sm〉Fπ

)
⊃

⊃ 〈C[U1, . . . , Un, t1, . . . , tm] ≡ C[V1, . . . , Vn, s1, . . . , sm]〉Fπ

The term “context” stands here for a formula with “holes”, in which formulas
or terms can be inserted, completing the context up to a well-formed formula.
The corollary can be proved similarly to previous statements.

The key property of local images is given by the following theorem.

Theorem 1. For any formulas F , U , V

π ∈ ΠF(F) ⇒ ` 〈U ≡ V 〉Fπ ⊃ (F [U]π ≡ F [V]π)

π ∈ Π+
F (F) ⇒ ` 〈U ⊃ V 〉Fπ ⊃ (F [U]π ⊃ F [V]π)

π ∈ Π−
F (F) ⇒ ` 〈V ⊃ U〉Fπ ⊃ (F [U]π ⊃ F [V]π)

This theorem is proved by induction on the length of π. The proof is quite
straightforward and we omit it because of lack of space.

By Theorem 1, we can safely replace subformulas not only by equivalent
formulas but by locally equivalent ones as well. Note that the inverse of the
theorem holds in the propositional logic: `0 〈U ≡ V 〉Fπ ≡ (F [U]π ≡ F [V]π).
Local equivalence is there a criterion of substitutional equivalence. It is not the
case for the first-order logic, where (∃xx ≈ 0) is equivalent to (∃xx ≈ 1).

Remark 1. In what follows, we often apply Theorem 1 and related results to
positions from Πt, having in mind the position of the enclosing atomic formula.
Note that any statement which is locally true in a term position is also locally
true in the position of the enclosing atomic formula, since the local images are
the same.

Corollary 4. For any formula F , a position π ∈ Πt(F), and terms s and t,

` 〈s ≈ t〉Fπ ⊃ (F [s]π ≡ F [t]π)

Follows from Theorem 1 and Corollary 3.

Corollary 5. For any formula F , a position π ∈ ΠF(F), and formulas U , V

` 〈U〉Fπ ⊃ (F [V]π ≡ F [U ∧ V]π) ` 〈U〉Fπ ⊃ (F [V]π ≡ F [U ⊃ V]π)

` 〈V ⊃ U〉Fπ ⊃ (F [V]π ≡ F [U ∧ V]π) ` 〈U ⊃ V 〉Fπ ⊃ (F [V]π ≡ F [U ∨ V]π)

Consider a closed formula H of the form ∀x (C ⊃ (A ≡ D)), where A
is an atomic formula. Consider a formula F and a position π ∈ ΠA(F) such
that F |π = Aσ for some substitution σ. If we can prove 〈Cσ〉Fπ , then we have
〈Aσ ≡ Dσ〉Fπ by Lemma 1 and Corollary 2 (provided that H is among the
premises). Then we can replace Aσ with Dσ by Theorem 1 (we generalize this
technique in the following section). Returning to Example 3, we can guarantee
that such an expansion is always possible (since 〈n − 1 ∈ IN ∧ n − 2 ∈ IN 〉Fπ
holds) and is never infinite (since 〈n− 1 < n ∧ n− 2 < n〉Fπ holds).

However, the notion of a local image introduced above has a disadvantage:
it is not invariant w.r.t. transformations at adjacent positions.

Example 4. Since 〈A〉A∧A
0 is valid, (A∧A) is equivalent to (>∧A) by Theorem 1.

But 〈A〉A∧A
1 is also valid, whereas 〈A〉>∧A

1 is not.

Generally, we can build a formula F whose two subformulas U and V assure
certain local properties for each other. Using these properties, we replace U with
a locally equivalent formula U ′. But thus we can lose the local properties of V .

This does not play an important role when we consider one-time transforma-
tions, e.g. simplifications. Indeed, one should check that simplification is possible
just before doing it. But there are also certain local properties that we would
prefer keep intact during the entire proof.

For example, we can verify the ontological correctness of a given occurrence
of a function symbol in the initial task and it is quite desirable to preserve further
this correctness in order to expand the definition of that symbol at any moment,
without extra verifications.

To that aim, we slightly change the definition of a local image in such a way
that only the formulas at precedent positions get into the context. Psychologi-
cally, this is natural, since assertions of that kind (type declarations, limits, etc)
are usually written before “significant” formulas.

The directed local image of a formula U w.r.t. a formula F and a position
π ∈ ΠF(F), denoted 〈|U |〉Fπ , is defined as follows:

〈|U |〉F≡G
0.π = 〈|U |〉Fπ 〈|U |〉F≡G

1.π = 〈|U |〉Gπ 〈|U |〉∀xF
0.π = ∀x 〈|U |〉Fπ

〈|U |〉F⊃G
0.π = 〈|U |〉Fπ 〈|U |〉F⊃G

1.π = F ⊃ 〈|U |〉Gπ 〈|U |〉∃xF
0.π = ∀x 〈|U |〉Fπ

〈|U |〉F∧G
0.π = 〈|U |〉Fπ 〈|U |〉F∧G

1.π = F ⊃ 〈|U |〉Gπ 〈|U |〉¬F
0.π = 〈|U |〉Fπ

〈|U |〉F∨G
0.π = 〈|U |〉Fπ 〈|U |〉F∨G

1.π = F ∨ 〈|U |〉Gπ 〈|U |〉Fε = U

For a position π ∈ Πt(F), we define 〈|U |〉Fπ to be 〈|U |〉Fbπ , where π̂ is the longest
prefix of π in ΠF(F).

First, note that all statements proved so far about “indirected” images hold
for directed ones, too. In some sense, directed image is just a reduction, with
some conditions and alternatives eliminated. This is illustrated by the following
trivial lemma.

Lemma 3. ` 〈|U |〉Fπ ⊃ 〈U〉Fπ

Theorem 2. For any formula F and two adjacent π, τ ∈ ΠF(F),

` 〈|U ≡ V |〉Fπ ⊃
(
〈|W |〉F [U]π

τ ≡ 〈|W |〉F [V]π
τ

)
Proof. We proceed by induction on the length of π. It is easy to see that, if τ

textually precedes π, then the formulas 〈|W |〉F [U]π
τ and 〈|W |〉F [V]π

τ are identical.
So we can suppose that π textually precedes τ , that is, there exist ω, µ, and η
such that π = ω.0.µ and τ = ω.1.η. It is easy to see that we can reduce our
problem to

` 〈|U ≡ V |〉G∗H0.µ ⊃
(
〈|W |〉(G∗H)[U]0.µ

1.η ≡ 〈|W |〉(G∗H)[V]0.µ

1.η

)
where (G ∗H) = F |ω. The latter is equivalent to

` 〈|U ≡ V |〉Gµ ⊃
(
〈|W |〉G[U]µ∗H

1.η ≡ 〈|W |〉G[V]µ∗H
1.η

)
and then to

` 〈|U ≡ V |〉Gµ ⊃
(
(G[U]µ ? 〈|W |〉Hη) ≡ (G[V]µ ? 〈|W |〉Hη)

)
where ? is either ⊃ or ∨, in dependence of ∗. By Lemma 3 and Theorem 1,
〈|U ≡ V |〉Gµ implies (G[U]µ ≡ G[V]µ), hence the claim is proved. ut

Corollary 6. For any formula F and two adjacent π, τ ∈ Πt(F),

` 〈|s ≈ t|〉Fπ ⊃
(
〈|W |〉F [s]π

τ ≡ 〈|W |〉F [t]π
τ

)
Finally, we introduce the notion of local substitution. Let H be a formula such

that no quantifier occurs in H in the scope of another quantifier over the same
variable. Given a position π ∈ ΠF(H), the result of local substitution H[σ]π is
defined as follows:

F [σ]ε = F (F ∗G)[σ]0.τ = F [σ]τ ∗G

(¬F)[σ]0.τ = ¬F [σ]τ (F ∗G)[σ]1.τ = F ∗G[σ]τ
(∀xF)[σ]0.τ = (F [x/xσ])[σ]τ (∀y F)[σ]0.τ = ∀y F [σ]τ
(∃xF)[σ]0.τ = (F [x/xσ])[σ]τ (∃y F)[σ]0.τ = ∃y F [σ]τ

where xσ 6= x and yσ = y in the last four equations, i.e. we eliminate the
quantifiers over the instantiated variables. Here and below, we will assume that
xσ is free for x in F and further, σ does not instantiate any variable that occurs
in one of the substitutes of σ.

When applied without restrictions, local substitutions may produce illegal
instances (e.g. when variables of opposite polarities are instantiated). Also, local
substitutions do not preserve local properties in adjacent positions. Consider the
formula F = ∀xP (x) ∧ A and the substitution σ = [s/x] to be applied in F at
π = 1.0, so that F [σ]π = (P (s)∧A). The atom A has the local property ∀xP (x)
in F but loses this property in F [σ]π — something we would like to avoid.

Therefore, we introduce a more fine-grained operation. As before, let H be
a formula such that no quantifier occurs in H in the scope of another quantifier
over the same variable, and π be a position in ΠF(H).

(F ⊃ G)[σ]+0.τ = F [σ]−τ ⊃ ⊥ (F ⊃ G)[σ]+1.τ = F ⊃ G[σ]+τ
(F ∨G)[σ]+0.τ = F [σ]+τ ∨ ⊥ (F ∨G)[σ]+1.τ = F ∨G[σ]+τ
(F ∧G)[σ]+0.τ = F [σ]+τ ∧G (F ∧G)[σ]+1.τ = F ∧G[σ]+τ
(∃xF)[σ]+0.τ = (F [x/xσ])[σ]+τ (F ≡ G)[σ]+τ = F ≡ G

(∃y F)[σ]+0.τ = ∃y F [σ]+τ (¬F)[σ]+0.τ = ¬F [σ]−τ
(∀z F)[σ]+0.τ = ∀z F [σ]+τ F [σ]+ε = F

(F ⊃ G)[σ]−0.τ = F [σ]+τ ⊃ G (F ⊃ G)[σ]−1.τ = F ⊃ G[σ]−τ
(F ∨G)[σ]−0.τ = F [σ]−τ ∨G (F ∨G)[σ]−1.τ = F ∨G[σ]−τ
(F ∧G)[σ]−0.τ = F [σ]−τ ∧ > (F ∧G)[σ]−1.τ = F ∧G[σ]−τ
(∀xF)[σ]−0.τ = (F [x/xσ])[σ]−τ (F ≡ G)[σ]−τ = F ≡ G

(∀y F)[σ]−0.τ = ∀y F [σ]−τ (¬F)[σ]−0.τ = ¬F [σ]+τ
(∃z F)[σ]−0.τ = ∃z F [σ]−τ F [σ]−ε = F

where xσ 6= x and yσ = y. For a position π ∈ Πt(H), we define H[σ]+π = H[σ]+bπ
and H[σ]−π = H[σ]−bπ , where π̂ is the longest prefix of π in ΠF(H).

These operations keep track of polarity of an occurrence in question and
do not instantiate inappropriate variables. Also they eliminate subformulas in
certain adjacent positions — exactly those ones which may lose their local prop-
erties after instantiation.

Lemma 4. Let H be a formula such that no quantifier occurs in H in the scope
of another quantifier over the same variable. Let π be a position in Π(H) and
σ, a substitution. Then we have:

` H[σ]+π ⊃ H ` H ⊃ H[σ]−π

Theorem 3. Let H be a formula such that no quantifier occurs in H in the scope
of another quantifier over the same variable. Let π be a position in Π(H) and σ,
a substitution. For any polarity s ∈ {+,−} and any position τ ∈ ΠA(H[σ]sπ), ei-
ther (H[σ]sπ)|τ = > or there exists a position τ ′ ∈ ΠA(H) such that the following
holds:

Let µ be the longest common prefix of π and τ ′. Let σ′ be a substitution
such that for any varaible x, if a quantifier over x is eliminated in H[σ]sµ, then
xσ′ = xσ, otherwise xσ′ = x. Then (H[σ]sπ)|τ = (H|τ ′)σ′ and

` 〈|U |〉Hτ ′ ⊃ 〈|Uσ′|〉H[σ]sπ
τ

Proof. We can suppose without loss of generality that π ∈ ΠF(H) (otherwise
π̂ should be taken instead of π). We will prove this lemma by induction on

the length of π. In the base case (π = ε), we take τ ′ = τ and σ′ = ι, the
trivial substitution. Thus the claim is obviously true. Otherwise we consider
three typical cases.

Case H = (F ⊃ G), π = 0.π0, s = −, H[σ]sπ = F [σ]+π0
⊃ G, τ = 1.τ0.

We take τ ′ = τ and σ′ = ι. Obviously, (H[σ]−π)|τ = G|τ0 = (H|τ ′)σ′. Further-
more, 〈|U |〉Hτ ′ = F ⊃ 〈|U |〉Gτ0

and 〈|Uσ′|〉H[σ]sπ
τ = F [σ]+π0

⊃ 〈|U |〉Gτ0
. By Lemma 4,

` F [σ]+π0
⊃ F , and the claim holds. Note that we could not make the final step

in the case s = +, and therefore we had to define H[σ]+π = F [σ]−π0
⊃ ⊥.

Case H = (F ⊃ G), π = 1.π0, s = +, H[σ]sπ = F ⊃ G[σ]+π0
, τ = 1.τ0. By the

induction hypothesis, there exist τ ′0 ∈ ΠA(G) and a substitution σ′ such that

(G[σ]+π0
)|τ0 = (G|τ ′0)σ

′ and ` 〈|U |〉Gτ ′0 ⊃ 〈|Uσ′|〉
G[σ]+π0
τ0 . Then we take τ ′ = 1.τ ′0 and

obtain (H[σ]+π)|τ = (H|τ ′)σ′. Moreover, 〈|U |〉Hτ ′ (equal to F ⊃ 〈|U |〉Gτ ′0) implies

〈|Uσ′|〉H[σ]+π
τ (equal to F ⊃ 〈|U |〉

G[σ]+π0
τ0).

Case H = (∀xF), π = 0.π0, s = −, H[σ]sπ = (F [x/xσ])[σ]−π0
, τ = τ0.

Let F ′ stand for F [x/xσ]. By the induction hypothesis, there exist some τ ′0 ∈
ΠA(F ′) and a substitution σ′0 such that (F ′[σ]−π0

)|τ0 = (F ′|τ ′0)σ
′
0 and for any V ,

` 〈|V |〉F ′

τ ′0
⊃ 〈|V σ′0|〉

F ′[σ]−π0
τ0 . Then we take τ ′ = 0.τ ′0 and σ′ = σ′0◦[x/xσ] (recall that

σ′0 does not instantiate variables from xσ). We obtain (H[σ]−π)|τ = (F ′[σ]−π0
)|τ0 =

(F ′|τ ′0)σ
′
0 = (F |τ ′0)σ

′ = (H|τ ′)σ′. Further, the local image 〈|U |〉Hτ ′ (equal to
∀x 〈|U |〉Fτ ′0) implies (〈|U |〉Fτ ′0)[x/xσ]. The latter formula is equal to 〈|U [x/xσ]|〉F ′

τ ′0

and thus implies 〈|(U [x/xσ])σ′0|〉
F ′[σ]−π0
τ0 , that is, 〈|Uσ′|〉H[σ]−π

τ . ut

Informally, Theorem 3 says that any atom in H that “survives” instantiation
(i.e. is not replaced with a boolean constant) preserves its local properties, which
are instantiated together with the atom.

5 Applying local properties

Let us consider a formula of the form H[F]π such that no quantifier occurs in it
in the scope of another quantifier over the same variable. Let σ be a substitu-
tion. By Theorem 3, there exist a formula H ′, a position π′, and a substitution
σ′ such that (H[F]π)[σ]−π ≡ H ′[Fσ′]π′ and every local property of F in H is
preserved (modulo instantiation) in H ′. (While π is not a position of atom in
H[F]π, we can take an atom P (x), where P is a new predicate symbol and x are
the free variables of F , and prove (H[P (x)]π)[σ]−π ≡ H ′[P (x)σ′]π′ . Note that
P (x) cannot turn into a boolean constant in (H[P (x)]π)[σ]−π . Then we have
∀x (P (x) ≡ F) ` (H[F]π)[σ]−π = H ′[Fσ′]π′ , by Lemma 1 and Theorem 1. Since
P is a new symbol, the premise ∀x (P (x) ≡ F) can be discarded.) By Lemma 4,
H[F]π implies H ′[Fσ′]π′ .

We can prove that H ′[Fσ′]π′ implies ∃x′ (Fσ′) ∨ H ′[⊥]π′ , where x′ are the
free variables of Fσ′. Indeed, H ′[Fσ′]π′ implies ∃x′ (Fσ′) ∨ H ′[Fσ′]π′ , which
is equivalent to ∀x′ (¬Fσ′) ⊃ H ′[Fσ′]π′ , which is equivalent to ∀x′ (¬Fσ′) ⊃
H ′[⊥]π′ by Theorem 1. Therefore, H[F]π implies ¬H ′[⊥]π′ ⊃ ∃x′ (Fσ′).

This provides us with a handy tool to test applicability of definitions in a
ForTheL text. Consider a section A and suppose that Γ is the set of sections
which logically precede A in the text. Let G be the formula image of A. Let
P (s) occur in G in a position µ. Now, suppose that D ∈ Γ is a definition for
the predicate symbol P . Quite naturally, the formula image of D is of the form
∀x1(H1 ⊃ . . .∀xk(Hk ⊃ (P (x1,...,k) ≡ D)) . . .). By previous, it suffices to prove
Γ ` 〈|H1σ ⊃ . . .Hkσ ⊃ ⊥|〉Gµ , where σ is the substitution [x1,...,k/s], to obtain
Γ ` 〈|P (s) ≡ Dσ|〉Gµ . Then G is equivalent to G[Dσ]µ, that is, we can apply the
definition D to P (s). Moreover, all the local properties of terms and subformulas
of D in D, instantiated with σ, hold in Dσ in G[Dσ]µ.

In a similar fashion, we define applicability for other forms of ForTheL defi-
nitions and signature extensions. Note that the substitution σ and the position
of the local instantiation in |D| are unambiguously determined by the form of
D. Using the method described above, we can test any logical predecessor of
A for applicability at a given position in |A|, but then we have to choose an
appropriate local instantiation ourselves.

Now, a section A is ontologically correct in view of Γ if and only if every
occurrence of a non-logical symbol in |A| either has an applicable definition or
signature extension in Γ or is the principal occurrence in a definition or signature
extension A (which means that A introduces that very symbol).

A ForTheL text is ontologically correct whenever each section in it is onto-
logically correct in view of its logical predecessors.

6 Conclusion

We have introduced the notion of a locally valid statement for the classical first-
order logic and showed how it can be used to reason about the interiors of a
formula. In particular, we proved that a locally true equivalence is a sufficient
condition for an equivalent transformation of a subformula. The local validity
of a statement is expressed with the help of local images which can be regarded
as a syntactical formalization of the notion of a logical context of the statement
occurrence. Since locally equivalent transformations may break local properties
of other occurrences, we introduced the notion of directed local validity which is
invariant w.r.t. directed locally equivalent transformations. Finally, we defined
the operation of local instantiation and showed that this transformation pre-
serves directed local properties. Using this theoretical background, we gave a
clear definition of an ontologically correct ForTheL text.

The proposed approach can be regarded as a way to handle partial relations
and functions in a mathematical text. Instead of introducing special individual
or truth values for undefinedness (as in Kleene’s strong logic [6]), ontological
correctness requires every term or atom to be well-defined a priori, by confor-
mance to the guards of corresponding definitions. Using directed images and
deductive techniques preserving local properties, we can guarantee that the text
under consideration always stays well-defined. In our opinion, this corresponds
well to the usual mathematical practice.

Of course, reasoning inside a formula is not a new idea. To our knowledge,
related concepts were first introduced by L.G. Monk in [7] and were further devel-
oped in [8]. P.J. Robinson and J. Staples proposed a full-fledged inference system
(so called “window inference”) [9] which operated on subexpressions taking the
surrounding context into account. This inference system has been generalized
and extended by J. Grundy [10].

A common trait of the mentioned approaches is that the local context of
an occurrence is represented by a set of formulas which are regarded as local
premises for the position in question. Special inference rules are then needed
to handle a local context and, what is worse, some “strong” transformations,
e.g. replacing A ∨ B with ¬A ⊃ B, are required. The notion of local image, as
described in this paper, seems to be lighter and less intrusive. In particular, the
results of Section 4 are valid in intuitionistic logic, while the local contexts of [7]
cannot be adapted for intuitionistic logic in any obvious way.

Moreover, the definition of a local image can be easily extended to a (uni)-
modal language: 〈U〉�F

0.π = �〈U〉Fπ and 〈U〉♦F
0.π = �〈U〉Fπ , and similarly for di-

rected images. Then the statements of Section 4 (local instantiation aside) can
be proved in the modal logic K, hence in any normal modal logic.

Acknowledgements. This work is supported by the INTAS project 05-1000008-
8144. Some parts were done within the scope of the project M/108-2007 in the
framework of the joint French-Ukrainian programme “Egide-Dnipro”.

References

1. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proc. 9th
International Joint Conference on Artificial Intelligence. (1985) 26–28

2. Barendregt, H.: Towards an interactive mathematical proof language. In Ka-
mareddine, F., ed.: Thirty Five Years of Automating Mathematics, Heriot-Watt
University, Edinburgh, Scotland, Kluwer Academic Publishers (2003) 25–36

3. Kamareddine, F., Nederpelt, R.P.: A Refinement of de Bruijn’s Formal Language
of Mathematics. Journal of Logic, Language and Information 13(3) (2004) 287–340

4. Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistant —
how should we go from here to there? Journal of Applied Logic 4(4) (2006) 560–591

5. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof verifica-
tion in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Math-
ematical Knowledge Management: Third International Conference, MKM 2004.
Volume 3119 of Lecture Notes in Computer Science., Springer (2004) 236–250

6. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1952)
7. Monk, L.G.: Inference rules using local contexts. Journal of Automated Reasoning

4(4) (1988) 445–462
8. Corella, F.: What holds in a context? Journal of Automated Reasoning 10(2)

(1993) 79–93
9. Robinson, P.J., Staples, J.: Formalising the hierarchical structure of practical

mathematical reasoning. Journal of Logic and Computation 3(1) (1993) 47–61
10. Grundy, J.: Transformational hierarchical reasoning. The Computer Journal 39(4)

(1996) 291–302

